Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 598: 93-103, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33894618

RESUMO

HYPOTHESIS: Self-similarity is a scale-invariant irregularity that can assist in designing a robust superhydrophobic material. A combinatorial design strategy involving self-similarity and dual-length scale can be employed to create a new library of a doubly re-entrant, disordered, and porous network of superhydrophobic materials. Asymmetric wettability can be engineered in nonwoven materials by rendering them with superhydrophobic characteristics on one side. EXPERIMENTS: A facile, scalable, and inexpensive spray-coating technique was used to decorate the weakly hydrophobicstearate-treatedtitanate nanowires (TiONWs)over the self-similar nonwoven material. Laser scanning confocal microscopy was employed to image the impalement dynamics in three dimensions. With the aid of X-ray microcomputed tomography analysis, the three-dimensional (3D) nonwoven structural parameters were obtained and analyzed. The underwater superhydrophobic behavior of the prepared samples was investigated. FINDINGS: A classic 'lotus effect' has been successfully endowed in self-similar nonwoven-titanate nanostructured materials (SS-Ti-NMs) from a nonwoven material that housed the air pockets in bulk and water repellent TiONWs on the surface. The finer fiber-based SS-Ti-NMs exhibited lower roll-off angles and a thinner layer of water on its surface. An asymmetric wettability and the unusual display of underwater superhydrophobic behavior of SS-Ti-NMs have been uncovered.

2.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443385

RESUMO

Biopolymer coated magnetite nanoparticles (MNPs) are suitable to fabricate biocompatible magnetic fluid (MF). Their comprehensive characterization, however, is a necessary step to assess whether bioapplications are feasible before expensive in vitro and in vivo tests. The MNPs were prepared by co-precipitation, and after careful purification, they were coated by chondroitin-sulfate-A (CSA). CSA exhibits high affinity adsorption to MNPs (H-type isotherm). We could only make stable MF of CSA coated MNPs (CSA@MNPs) under accurate conditions. The CSA@MNP was characterized by TEM (size ~10 nm) and VSM (saturation magnetization ~57 emu/g). Inner-sphere metal-carboxylate complex formation between CSA and MNP was proved by FTIR-ATR and XPS. Electrophoresis and DLS measurements show that the CSA@MNPs at CSA-loading > 0.2 mmol/g were stable at pH > 4. The salt tolerance of the product improved up to ~0.5 M NaCl at pH~6.3. Under favorable redox conditions, no iron leaching from the magnetic core was detected by ICP measurements. Thus, the characterization predicts both chemical and colloidal stability of CSA@MNPs in biological milieu regarding its pH and salt concentration. MTT assays showed no significant impact of CSA@MNP on the proliferation of A431 cells. According to these facts, the CSA@MNPs have a great potential in biocompatible MF preparation for medical applications.


Assuntos
Sulfatos de Condroitina/química , Materiais Revestidos Biocompatíveis/química , Nanopartículas de Magnetita/química , Adsorção , Técnicas de Química Sintética , Coloides/química , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas de Magnetita/ultraestrutura , Análise Espectral
3.
Int J Nanomedicine ; 14: 667-687, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30705586

RESUMO

PURPOSE: The biomedical applications of silver nanoparticles (AgNPs) are heavily investigated due to their cytotoxic and antimicrobial properties. However, the scientific literature is lacking in data on the aggregation behavior of nanoparticles, especially regarding its impact on biological activity. Therefore, to assess the potential of AgNPs in therapeutic applications, two different AgNP samples were compared under biorelevant conditions. METHODS: Citrate-capped nanosilver was produced by classical chemical reduction and stabilization with sodium citrate (AgNP@C), while green tea extract was used to produce silver nanoparticles in a green synthesis approach (AgNP@GTs). Particle size, morphology, and crystallinity were characterized using transmission electron microscopy. To observe the effects of the most important biorelevant conditions on AgNP colloidal stability, aggregation grade measurements were carried out using UV-Vis spectroscopy and dynamic light scatterig, while MTT assay and a microdilution method were performed to evaluate the effects of aggregation on cytotoxicity and antimicrobial activity in a time-dependent manner. RESULTS: The aggregation behavior of AgNPs is mostly affected by pH and electrolyte concentration, while the presence of biomolecules can improve particle stability due to the biomolecular corona effect. We demonstrated that high aggregation grade in both AgNP samples attenuated their toxic effect toward living cells. However, AgNP@GT proved less prone to aggregation thus retained a degree of its toxicity. CONCLUSION: To our knowledge, this is the first systematic examination regarding AgNP aggregation behavior with simultaneous measurements of its effect on biological activity. We showed that nanoparticle behavior in complex systems can be estimated by simple compounds like sodium chloride and glutamine. Electrostatic stabilization might not be suitable for biomedical AgNP applications, while green synthesis approaches could offer new frontiers to preserve nanoparticle toxicity by enhancing colloidal stability. The importance of properly selected synthesis methods must be emphasized as they profoundly influence colloidal stability, and therefore biological activity.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Prata/química , Linhagem Celular Tumoral , Ácido Cítrico/química , Humanos , Tamanho da Partícula , Eletricidade Estática , Relação Estrutura-Atividade
4.
Nanomaterials (Basel) ; 8(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30274317

RESUMO

For biomedical applications, superparamagnetic nanoparticles (MNPs) have to be coated with a stealth layer that provides colloidal stability in biological media, long enough persistence and circulation times for reaching the expected medical aims, and anchor sites for further attachment of bioactive agents. One of such stealth molecules designed and synthesized by us, poly(polyethylene glycol methacrylate-co-acrylic acid) referred to as P(PEGMA-AA), was demonstrated to make MNPs reasonably resistant to cell internalization, and be an excellent candidate for magnetic hyperthermia treatments in addition to possessing the necessary colloidal stability under physiological conditions (Illés et al. J. Magn. Magn. Mater. 2018, 451, 710⁻720). In the present work, we elaborated on the molecular background of the formation of the P(PEGMA-AA)-coated MNPs, and of their remarkable colloidal stability and salt tolerance by using potentiometric acid⁻base titration, adsorption isotherm determination, infrared spectroscopy (FT-IR ATR), dynamic light scattering, and electrokinetic potential determination methods. The P(PEGMA-AA)@MNPs have excellent blood compatibility as demonstrated in blood sedimentation, smears, and white blood cell viability experiments. In addition, blood serum proteins formed a protein corona, protecting the particles against aggregation (found in dynamic light scattering and electrokinetic potential measurements). Our novel particles also proved to be promising candidates for MRI diagnosis, exhibiting one of the highest values of r2 relaxivity (451 mM-1s-1) found in literature.

5.
ACS Omega ; 3(10): 12482-12488, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457979

RESUMO

Previous theoretical reports have described the oxidation of few-layer black phosphorus and its effects on the electronic properties. Theoretically, native oxide layers bring opportunities for band gap engineering, but the detection of the different types of oxides is still a challenge at the experimental level. In this work, we uncover a correlation between thermal processes and Raman shift for the Ag 1, B2g, and Ag 2 vibrational modes. The thermal expansion coefficients (temperature range, 290-485 K) for the Ag 1, B2g, and Ag 2 were -0.015, -0.027, and -0.028 cm-1 K-1, respectively. Differential scanning calorimetry analysis shows an endothermic process centered at 528 K, and it was related with a mass increase according to thermogravimetric analysis. Raman shift temperature dependence was correlated to theoretical lattice thermal expansion, and a significant deviation was detected in the stacking direction at 500 K.

6.
Interface Focus ; 6(6): 20160068, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27920900

RESUMO

Nanoparticles do not exist in thermodynamical equilibrium because of high surface free energy, thus they have only kinetic stability. Spontaneous changes can be delayed by designed surface coating. In biomedical applications, superparamagnetic iron oxide nanoparticles (SPIONs) require an optimized coating in order to fulfil the expectation of medicine regulatory agencies and ultimately that of biocompatibility. In this work, we show the high surface reactivity of naked SPIONs due to ≡Fe-OH sites, which can react with H+/OH- to form pH- and ionic strength-dependent charges. We explain the post-coating of naked SPIONs with organic polyacids via multi-site complex bonds formed spontaneously. The excess polyacids can be removed from the medium. The free COOH groups in coating are prone to react with active biomolecules like proteins. Charging and pH- and salt-dependent behaviour of carboxylated SPIONs were characterized quantitatively. The interrelation between the coating quality and colloidal stability measured under biorelevant conditions is discussed. Our coagulation kinetics results allow us to predict colloidal stability both on storage and in use; however, a simpler method would be required to test SPION preparations. Haemocompatibility tests (smears) support our qualification for good and bad SPION manufacturing; the latter 'promises' fatal outcome in vivo.

7.
Nanoscale Res Lett ; 11(1): 297, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27299652

RESUMO

Functionalized superparamagnetic iron oxide nanoparticles are frequently used to develop vehicles for drug delivery, hyperthermia, and photodynamic therapy and as tools used for magnetic separation and purification of proteins or for biomolecular imaging. Depending on the application, there are various possible covalent and non-covalent approaches for the functionalization of particles, each of them shows different advantages and disadvantages for drug release and activity at the desired location.Particularly important for the production of adsorptive and covalent bound drugs to nanoparticles is the pureness of the involved formulation. Especially the covalent binding strategy demands defined chemistry of the drug, which is stabilized by excess free amino acids which could reduce reaction efficiency. In this study, we therefore used tangential flow filtration (TFF) method to purify the drugs before the reaction and used the frequently applied and clinically available recombinant tissue plasminogen activator (tPA; Actilyse(®)) as a proof of concept. We then coupled the tPA preparation to polyacrylic acid-co-maleic acid (PAM)-coated superparamagnetic iron oxide nanoparticles (SPIONs) using an amino-reactive activated ester reaction and compared these particles to PAM-coated SPIONs with electrostatically adsorbed tPA.Using dynamic light scattering (DLS) and pH-dependent electrokinetic mobility measurements, we showed that surface properties of the SPIONs were significantly greater affected after activation of the particles compared to the adsorption controls. Different in vitro assays were used to investigate the activity of tPA after coupling to the particles and purification of the ferrofluid. Covalent linkage significantly improves the reactivity and long-term stability of the conjugated SPION-tPA system compared to simple adsorption. In conclusion, we have shown an effective way to produce SPIONs with covalent and non-covalent ultra-filtrated drugs. We showed that using activated ester reaction, immobilization of the protein was significantly better than in adsorptive approaches. Investigation of those functionalized SPIONs revealed diverging attributes, which should be taken into account when developing nanoparticles for different applications.

8.
ACS Appl Mater Interfaces ; 7(18): 9947-56, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25859883

RESUMO

Understanding of water-related electrical conduction is of utmost importance in applications that utilize solid-state proton conductors. However, in spite of the vast amount of theoretical and experimental work published in the literature, thus far its mechanism remained unsolved. In this study, the structure-related ambient temperature electrical conduction of one-dimensional hydrophilic nanostructures was investigated. Cerium phosphate nanowires with monoclinic and hexagonal crystal structures were synthesized via the hydrothermal and ambient temperature precipitation routes, and their structural and surface properties were examined by using high-resolution transmission electron microscopy, X-ray diffractometry, nitrogen and water sorption, temperature-programmed ammonia desorption, and potentiometric titration techniques. The relative humidity (RH)-dependent charge-transport processes of hexagonal and monoclinic nanowires were investigated by means of impedance spectroscopy and transient ionic current measurement techniques to gain insight into their atomistic level mechanism. Although considerable differences in RH-dependent conductivity were first found, the distinct characteristics collapsed into a master curve when specific surface area and acidity were taken into account, implying structure-independent proton conduction mechanism in both types of nanowires.

9.
Langmuir ; 30(51): 15451-61, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25517214

RESUMO

Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.


Assuntos
Biomimética/métodos , Ácidos Carboxílicos/química , Meio Ambiente , Ácido Gálico/química , Nanopartículas de Magnetita/química , Polimerização , Adsorção , Minerais/química , Tamanho da Partícula , Propriedades de Superfície , Água/química
10.
ScientificWorldJournal ; 2014: 152972, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25685831

RESUMO

Bile salt aggregates are promising candidates for drug delivery vehicles due to their unique fat-solubilizing ability. However, the toxicity of bile salts increases with improving fat-solubilizing capability and so an optimal combination of efficient solubilization and low toxicity is necessary. To improve hydrophilicity (and decrease toxicity), we substituted hydroxyl groups of several natural bile acid (BA) molecules for oxogroups and studied their intrinsic molecular association behavior. Here we present the comparative Langmuir trough study of the two-dimensional (2D) association behavior of eight natural BAs and four oxoderivatives (traditionally called keto-derivatives) floated on an aqueous subphase. The series of BAs and derivatives showed systematic changes in the shape of the compression isotherms. Two types of association could be distinguished: the first transition was assigned to the formation of dimers through H-bonding and the second to the hydrophobic aggregation of BA dimers. Hydrophobic association of BA molecules in the films is linked to the ability of forming H-bonded dimers. Both H-bond formation and hydrophobic association weakened with increasing number of hydroxyl groups, decreasing distance between hydroxyl groups, and increasing oxosubstitution. The results also show that the Langmuir trough method is extremely useful in selecting appropriate BA molecules to design drug delivery systems.


Assuntos
Ácidos e Sais Biliares/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Oxirredução
11.
Int J Mol Sci ; 14(7): 14550-74, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23857054

RESUMO

Despite the large efforts to prepare super paramagnetic iron oxide nanoparticles (MNPs) for biomedical applications, the number of FDA or EMA approved formulations is few. It is not known commonly that the approved formulations in many instances have already been withdrawn or discontinued by the producers; at present, hardly any approved formulations are produced and marketed. Literature survey reveals that there is a lack for a commonly accepted physicochemical practice in designing and qualifying formulations before they enter in vitro and in vivo biological testing. Such a standard procedure would exclude inadequate formulations from clinical trials thus improving their outcome. Here we present a straightforward route to assess eligibility of carboxylated MNPs for biomedical tests applied for a series of our core-shell products, i.e., citric acid, gallic acid, poly(acrylic acid) and poly(acrylic acid-co-maleic acid) coated MNPs. The discussion is based on physicochemical studies (carboxylate adsorption/desorption, FTIR-ATR, iron dissolution, zeta potential, particle size, coagulation kinetics and magnetization measurements) and involves in vitro and in vivo tests. Our procedure can serve as an example to construct adequate physico-chemical selection strategies for preparation of other types of core-shell nanoparticles as well.


Assuntos
Coloides/química , Nanopartículas de Magnetita/química , Resinas Acrílicas/química , Adsorção , Animais , Ácidos Carboxílicos/química , Compostos Férricos/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Ratos , Cauda/patologia
12.
Langmuir ; 28(48): 16638-46, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23140279

RESUMO

Magnetite nanoparticles (MNPs) coated with poly(acrylic acid-co-maleic acid) polyelectrolyte (PAM) have been prepared with the aim of improving colloidal stability of core-shell nanoparticles for biomedical applications and enhancing the durability of the coating shells. FTIR-ATR measurements reveal two types of interaction of PAM with MNPs: hydrogen bonding and inner-sphere metal-carboxylate complex formation. The mechanism of the latter is ligand exchange between uncharged -OH groups of the surface and -COO(-) anionic moieties of the polyelectrolyte as revealed by adsorption and electrokinetic experiments. The aqueous dispersion of PAM@MNP particles (magnetic fluids - MFs) tolerates physiological salt concentration at composition corresponding to the plateau of the high-affinity adsorption isotherm. The plateau is reached at small amount of added PAM and at low concentration of nonadsorbed PAM, making PAM highly efficient for coating MNPs. The adsorbed PAM layer is not desorbed during dilution. The performance of the PAM shell is superior to that of poly(acrylic acid) (PAA), often used in biocompatible MFs. This is explained by the different adsorption mechanisms; metal-carboxylate cannot form in the case of PAA. Molecular-level understanding of the protective shell formation on MNPs presented here improves fundamentally the colloidal techniques used in core-shell nanoparticle production for nanotechnology applications.


Assuntos
Resinas Acrílicas/química , Materiais Biocompatíveis/química , Desenho de Fármacos , Nanopartículas de Magnetita/química , Imãs/química , Maleatos/química , Adsorção , Materiais Biocompatíveis/toxicidade , Proliferação de Células/efeitos dos fármacos , Coloides , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Sais/química , Propriedades de Superfície
13.
ACS Nano ; 6(5): 3967-73, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22494387

RESUMO

The extensive oxygen-group functionality of single-layer graphene oxide proffers useful anchor sites for chemical functionalization in the controlled formation of graphene architecture and composites. However, the physicochemical environment of graphene oxide and its single-atom thickness facilitate its ability to undergo conformational changes due to responses to its environment, whether pH, salinity, or temperature. Here, we report experimental and molecular simulations confirming the conformational changes of single-layer graphene oxide sheets from the wet or dry state. MD, PM6, and ab initio simulations of dry SLG and dry and wetted SLGO and electron microscopy imaging show marked differences in the properties of the materials that can explain variations in previously observed results for the pH dependent behavior of SLGO and electrical conductivity of chemically modified graphene-polymer composites. Understanding the physicochemical responses of graphene and graphene oxide architecture and performing selected chemistry will ultimately facilitate greater tunability of their performance.

14.
Colloids Surf B Biointerfaces ; 94: 242-9, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22366070

RESUMO

Magnetite nanoparticles (MNPs) were prepared by alkaline hydrolysis of Fe(II) and Fe(III) chlorides. Adsorption of polyacrylic acid (PAA) on MNPs was measured at pH=6.5±0.3 and I=0.01 M (NaCl) to find the optimal PAA amount for MNP stabilization under physiological conditions. We detected an H-bond formation between magnetite surface groups and PAA by ATR-FTIR measurements, but bonds of metal ion-carboxylate complexes, generally cited in literature, were not identified at the given pH and ionic strength. The dependence of the electrokinetic potential and the aggregation state on the amount of added PAA at various pHs was measured by electrophoretic mobility and dynamic light-scattering methods. The electrokinetic potential of the naked MNPs was low at near physiological pH, but PAA adsorption overcharged the particles. Highly negatively charged, well-stabilized carboxylated MNPs formed via adsorption of PAA in an amount of approximately ten times of that necessary to compensate the original positive charge of the magnetite. Coagulation kinetics experiments revealed gradual enhancement of salt tolerance at physiological pH from ~0.001 M at no added PAA up to ~0.5 M at 1.12 mmol/g PAA. The PAA-coated MNPs exert no substantial effect on the proliferation of malignant (HeLa) or non-cancerous fibroblast cells (MRC-5) as determined by means of MTT assays.


Assuntos
Resinas Acrílicas/química , Cloretos/química , Portadores de Fármacos/síntese química , Compostos Férricos/química , Compostos Ferrosos/química , Nanopartículas de Magnetita/química , Adsorção , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura , Portadores de Fármacos/farmacologia , Estabilidade de Medicamentos , Eletroforese , Fibroblastos/efeitos dos fármacos , Células HeLa , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Concentração Osmolar , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
15.
Chem Commun (Camb) ; 47(34): 9645-7, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21804996

RESUMO

Single-layer graphene oxides (SLGOs) undergo morphological changes depending on the pH of the system and may account for restricted chemical reactivity. Herein, SLGO may also capture nanoparticles through layering and enveloping when the pH is changed, demonstrating potential usefulness in drug delivery or waste material capture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...